A Wearable Soft Tactile Actuator With High Output Force for Fingertip Interaction

2021 
This paper reports a soft fingertip-mountable tactile actuator based on a Dielectric Elastomer Actuator (DEA), which exhibits high output force over a wide frequency range with a lightweight and soft structure. DEA is a soft actuator characterized by its large area strain, fast response speed, and high specific energy density. The proposed soft tactile actuator is constructed of a multi-layered conical DEA structure. This design has safety benefits because it isolates the high voltage components from the contact point. In this paper, the resonance frequency of the tactile actuator was designed to be at 250 Hz to maximize vibrotactile stimulation. In addition, the geometric design parameters of the soft tactile actuator were optimized by conducting the simulations and the experiments. Based on these efforts, the proposed actuator produces a high output force of 8.48 N at the resonance frequency, with a maximum displacement of 0.46 mm. Our wearable prototype was an entirely soft haptic system, which exhibits high output force, as well as flexibility and conformity with a total weight of 2.6 g.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []