Evolution of morphological crypsis in the Tetramorium caespitum ant species complex (Hymenoptera: Formicidae)

2018 
Cryptic species are morphologically very similar to each other. To what extent stasis or convergence causes crypsis and whether ecology influences the evolution of crypsis has remained unclear. The Tetramorium caespitum complex is one of the most intricate examples of cryptic species in ants. Here, we test three hypotheses concerning the evolution of its crypsis: H1: The complex is monophyletic. H2: Morphology resulted from evolutionary stasis. H3: Ecology and morphology evolved concertedly. We confirmed (H1) monophyly of the complex; (H2) a positive relation between morphological and phylogenetic distances, which indicates a very slow loss of similarity over time and thus stasis; and (H3) a positive relation between only one morphological character and a proxy of the ecological niche, which indicates concerted evolution of these two characters, as well as a negative relation between p-values of correct species identification and altitude, which suggests that species occurring in higher altitudes are more cryptic. Our data suggest that species-specific morphological adaptations to the ecological niche are exceptions in the complex, and we consider the worker morphology in this complex as an adaptive solution for various environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    12
    Citations
    NaN
    KQI
    []