Preparation and characterization of as-extruded Mg–Sn alloys for orthopedic applications

2015 
Abstract In this study, as-extruded Mg–Sn alloys with various Sn content were prepared and characterized for orthopedic applications. The results of microstructure observations and X-ray diffraction analysis showed that as-extruded Mg–Sn alloys were composed of α-Mg and Mg 2 Sn phases, and the content of Mg 2 Sn phase increased with increasing Sn content. The microstructure of as-extruded Mg–Sn alloy with 1 wt.% Sn was equiaxed grain, while the one with a higher Sn content was inhomogeneous microstructure and the grain size of the long elongated grains decreased with increasing Sn content. Tensile test revealed that the yield strength and ultimate tensile strength of as-extruded Mg–Sn alloys increased while the elongation decreased with increasing Sn content. Immersion and electrochemical tests indicated that the microstructure of as-extruded Mg–Sn alloys affected their corrosion properties, and the increase of Mg 2 Sn phase resulted from the increase of the Sn content led to a higher corrosion rate. The cytotoxicity test showed that as-extruded Mg–1Sn and Mg–3Sn alloys met the requirement of cell toxicity for orthopedic applications. Our analyses showed that as-extruded Mg–1Sn and Mg–3Sn alloys were promising to be used as biodegradable orthopedic implants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    59
    Citations
    NaN
    KQI
    []