Cross-tissue single-cell transcriptomic landscape reveals the key cell subtypes and their potential roles in the nutrient absorption and metabolism in dairy cattle

2021 
Abstract Introduction Dairy cattle are a vitally important ruminant in meeting the demands for high-quality animal protein production worldwide. The complicated biological process of converting human indigestible biomass into highly digestible and nutritious milk is orchestrated by various tissues. However, poorly understanding of the cellular composition and function of the key metabolic tissues hinders the improvement of health and performance of domestic ruminants. Objectives The cellular heterogeneity, metabolic features, interactions across ten tissue types of lactating dairy cattle were studied at single-cell resolution in the current study. Methods Unbiased single-cell RNA-sequencing and analysis were performed on the rumen, reticulum, omasum, abomasum, ileum, rectum, liver, salivary gland, mammary gland, and peripheral blood of lactating dairy cattle. Immunofluorescences and fluorescence in situ hybridization were performed to verify cell identity. Results In this study, we constructed a single-cell landscape covering 88,013 high-quality (500 Conclusion The findings enhance our understanding of the cellular biology of ruminants and open new avenues for improved animal production of dairy cattle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []