Effects of l -arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis

2018 
In this study, six swine-derived multiple-antimicrobial-resistant (MAR) strains of Salmonella Choleraesuis (S. Choleraesuis) were demonstrated to possess higher efflux pump activity than the wild-type (WT). l-Arabinose, a common inducer for gene expression, modulated S. Choleraesuis efflux pump activity in a dose-dependent manner. At low l-arabinose concentrations, increasing l-arabinose led to a corresponding increase in fluorophore efflux, while at higher l-arabinose concentrations, increasing l-arabinose decreased fluorophore efflux activity. The WT S. Choleraesuis that lacks TolC (ΔtolC), an efflux protein associated with bacterial antibiotic resistance and virulence, was demonstrated to possess a significantly reduced ability to extrude l-arabinose. Further, due to the rapid export of l-arabinose, an efficient method for recombination-mediated gene knockout, the l-arabinose-inducible bacteriophage λ Red recombinase system, has a reduced recombination frequency (~ 12.5%) in clinically isolated MAR Salmonella strains. An increased recombination frequency (up to 60%) can be achieved using a higher concentration of l-arabinose (fivefold) for genetic manipulation and functional analysis for MAR Salmonella using the λ Red system. The study suggests that l-arabinose serves not only as an inducer of the TolC-dependent efflux system but also acts as a competitive substrate of the efflux system. In addition, understanding the TolC-dependent efflux of l-arabinose should facilitate the optimization of l-arabinose induction in strains with high efflux activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []