Heating process and damage evolution of microwave absorption and transparency materials under microwave irradiation

2021 
Microwave processing is a useful technique for improving the mechanical breakage of rocks and rock minerals. The heating process of microwave absorption materials, transparency materials, and interface properties were investigated in this study. The crack propagation, interfacial debonding, and failure mode of materials under microwave heating were investigated experimentally. The cell model was then established to evaluate the effect of the heating process. In this model, pyrite was considered as a strong microwave absorber, and calcite was assumed to be a non-microwave response phase. The temperature field, stress gradient, and damage evolution of the materials under microwave irradiation were analyzed. Additionally, the effects of microwave power and irradiation time on the mechanical behavior were investigated. Furthermore, the effects of the volume content, particle size, and particle interaction on the heating results were simulated. Theoretical analysis was conducted to understand the related heating phenomenon. This study could enhance the comprehensive understanding of microwave-induced degradation of hard rocks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []