Genomic profiling of Mitochondrial DNA reveals novel complex gene mutations in familial type 2 diabetes mellitus individuals from Mizo ethnic population, Northeast India

2020 
Abstract The variants reported for mitochondrial DNA (mtDNA) and type 2 diabetes (T2D) may not be accountable for the disease in certain other populations and the risk depends upon numerous factors which may include genetics, environment as well as ethnicity. This leads to a challenge in identifying, exploring and comparing the variants between diabetic cases and healthy controls in a remote unexplored tribal population. To study the possible contribution of mtDNA variants, we sequenced the entire mitochondrial genomes and the frequencies of mtSNPs, their association with familial T2D and the potential impact of non-synonymous substitutions on protein functions were determined. The mtSNP 8584 G > A (ATP6: A20T) was detected in 14.28% of the diabetic patients and none in the control groups. The mitochondrial ND3 variant 10398A > G was found to be significantly associated with the risk of T2D (OR = 9.489, 95% CI = 1.161–77.54, P value = 0.036). A novel Frame-shift substitution ND5: 81_81ins A at position 12,417 was observed in 53.57% of diabetic individuals. Majority of the variants lie in tRNA-Phe in the non-protein coding region of mtDNA for both diabetic cases and common cases. We concluded that mutations in the coding (synonymous or non-synonymous) and noncoding regions of the mitochondria might have contribution towards the development of T2D. Our study is the first to report the distinct mitochondrial variants which may be attributed to the susceptibility as well as development of type 2 diabetes in an ethnic tribe from northeast India.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []