Approximate expression for the ground-state energy of the two- and three-dimensional Hubbard model at arbitrary filling obtained from dimensional scaling.

2019 
We generalize the linear discrete dimensional scaling approach for the repulsive Hubbard model to obtain a nonlinear scaling relation that yields accurate approximations to the ground-state energy in both two and three dimensions, as judged by comparison to auxiliary-field quantum Monte Carlo (QMC) data. Predictions are made for the per-site ground-state energies in two and three dimensions for n (filling factor) and U (Coulomb interaction) values for which QMC data are currently unavailable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []