Inhibition of transcription blocks cell cycle progression of NIH3T3 fibroblasts specifically in G1

1993 
We have analysed the role of RNA polymerase II-dependent transcription in cell cycle progression. Time-lapse video recording and cytogenetic analysis were used to determine the sensitivity of NIH3T3 cells to the RNA polymerase II inhibitor alpha-amanitin at different stages of the cell cycle. Our results show that alpha-amanitin blocks cells specifically in G1, irrespective of the concentration within the range of 3 to 30 micrograms/ml. This indicates that transcription in G1 is required to overcome a restriction point located in this phase of the cell cycle. In agreement with this conclusion is the requirement for an uninhibited protein synthesis during G1 progression. In addition, the insensitivity of S-phase cells to RNA polymerase II inhibition suggests that the transcription of genes thought to be normally induced during S/G2 is not required for the completion of an ongoing cell cycle. S/G2 progression was however clearly dependent on protein synthesis. This suggests that cells exposed to alpha-amanitin are able to complete their cell cycle because sufficiently high levels of mRNA are present in S/G2 due to basal level transcription, or are left from preceding cell cycles. It is therefore unlikely that transcriptional regulation in S or G2 plays a crucial role in the control of cell cycle progression in NIH3T3 cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    24
    Citations
    NaN
    KQI
    []