Effects of annealing on photoluminescence and defect interplay in ZnO bombarded by heavy ions: Crucial role of the ion dose

2020 
Bombardment of ZnO with heavy ions generating dense collision cascades is of particular interest because of the formation of nontrivial damage distribution involving a defected layer located between the surface and the bulk damage regions, as seen by Rutherford backscattering spectroscopy in the channeling mode. By correlating photoluminescence and channeling data, we demonstrate that the thermal evolution of defects in wurtzite ZnO single crystals implanted with Cd ions strongly depends on the implanted dose. Specifically, the ion dose has a profound effect on the optical response in the spectral range between the near-band-edge emission and deep-level emission bands. The interplay between interstitial and vacancy type defects during annealing is discussed in relation to the evolution of the multipeak damage distribution.Bombardment of ZnO with heavy ions generating dense collision cascades is of particular interest because of the formation of nontrivial damage distribution involving a defected layer located between the surface and the bulk damage regions, as seen by Rutherford backscattering spectroscopy in the channeling mode. By correlating photoluminescence and channeling data, we demonstrate that the thermal evolution of defects in wurtzite ZnO single crystals implanted with Cd ions strongly depends on the implanted dose. Specifically, the ion dose has a profound effect on the optical response in the spectral range between the near-band-edge emission and deep-level emission bands. The interplay between interstitial and vacancy type defects during annealing is discussed in relation to the evolution of the multipeak damage distribution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []