MHD free convection-radiation interaction in a porous medium - part II : Soret/Dufour effects

2020 
This paper is focused on the study of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a nonDarcy porous medium by taking account the Soret/Dufour effects. The boundary layer equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller–Box finite-difference scheme. Numerical results obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters, namely the buoyancy ratio parameter, Prandtl number, Forchheimer number, magnetohydrodynamic body force parameter, Soret and Dufour numbers. The dependency of the thermophysical properties has been discussed on the parameters and showed graphically. Increasing Forchheimer inertial drag parameter reduces velocity but elevates temperature and concentration. Increasing Soret number and simultaneously reducing Dufour number greatly boosts the local heat transfer rate at the cylinder surface. A comparative study between the previous published and present results in a limiting sense is found in an excellent agreement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []