Altered redox processes, defense responses, and flowering time are associated with survival of the temperate Camelina sativa under subtropical conditions

2020 
Abstract Sporadic and unpredictable extreme hot weather events associated with global warming have been an increasingly serious problem and are difficult to test under natural field conditions. In this study, we used subtropical summer to mimic extreme hot weather under realistic field conditions to test for heat tolerance in the cold-adapted emergent oil crop, Camelina sativa. Utilizing a forward genetic screen, Camelina was screened for heat-adapted genotypes, resulting in the identification of three subtropical summer tolerant (sst) mutants. The sst mutants were late flowering and exhibited altered expression of the key flowering genes FLOWER LOCUS C and FLOWER LOCUS T. With RNA-seq assay, it was found that redox and defense related genes were significantly enriched in the up-regulated genes of the sst mutants. Consistently, reduced hydrogen peroxide production and enhanced resistance to a fungal pathogen were observed. Overall, our results suggested that to breed temperate crops to adapt to the subtropics, flowering time, antioxidant ability, and defense signaling could be the potential targets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    1
    Citations
    NaN
    KQI
    []