THz spectroscopy of weakly bound cluster molecules in solid para-hydrogen: a sensitive probe of van der Waals interactions

2019 
The present work demonstrates that 99.9% enriched solid para-H2 below 3 K provides an excellent inert and transparent medium for the exploration of large-amplitude intermolecular vibrational motion of weakly bound van der Waals cluster molecules in the THz spectral region. THz absorption spectra have been generated for CO2/H2O and CS2/H2O mixtures embedded in enriched solid para-H2 and numerous observed transitions associated with large-amplitude librational motion of the weakly bound binary CO2⋯H2O and CS2⋯H2O van der Waals cluster molecules have been assigned together with tentative assignments for the ternary CS2⋯(H2O)2 system. The interaction strength, directionality and anharmonicity of the weak van der Waals “bonds” between the molecules can be characterized via these THz spectral signatures and yield rigorous benchmarks for high-level ab initio methodologies. It is suggested that even a less stable linear conformation of the ternary CS2⋯(H2O)2 system, where one H2O molecule is linked to each S atom of the CS2 subunit, may be formed due to the kinetics associated with the mobility of free H2O molecules in the soft para-H2 medium. In addition, the spectroscopic observations confirm a linear and planar global intermolecular potential energy minimum for the binary CS2⋯H2O system with C2v symmetry, where the O atom on the H2O molecule is linked to one of the S atoms on the CS2 subunit. A semi-experimental value for the vibrational zero-point energy contribution of 1.93 ± 0.10 kJ mol−1 from the class of large-amplitude intermolecular vibrational modes is proposed. The combination with CCSD(T)/CBS electronic energy predictions provides a semi-experimental estimate of 5.08 ± 0.15 kJ mol−1 for the binding energy D0 of the CS2⋯H2O van der Waals system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    2
    Citations
    NaN
    KQI
    []