A new class of luminescent nanoprobes based on main-group Sb3+ emitters

2021 
Inorganic luminescent nanocrystals (NCs) doped with main-group ns2-metal ions have evoked tremendous interest in many technological fields owing to their superior optical properties. Herein, we report a new class of luminescent nanoprobes based on 5s2-metal Sb3+-doped CaS NCs that are excitable by using a near ultraviolet light-emitting diode. The optical properties and excited-state dynamics of Sb3+ in CaS NCs are comprehensively surveyed through temperature-dependent steady-state and transient photoluminescence (PL) spectroscopies. Owing to the strong electron-phonon coupling of Sb3+ in CaS NCs, Sb3+ ions experience a dynamic Jahn-Taller distortion on the excited state, which results in bright green PL of Sb3+ with a broad emission band, a large Stokes shift, and a high PL quantum yield up to 17.3%. By taking advantage of the intense PL of Sb3+, we show in proof-of-concept experiments the application of biotinylated CaS:Sb3+ NCs as sensitive luminescent nanoprobes for biotin receptor-targeted cancer cell imaging and zebrafish imaging with a high imaging contrast. These findings provide fundamental insights into the excited-state dynamics of Sb3+ in CaS NCs, thus laying a foundation for future design of novel and versatile luminescent nanoprobes via main-group ns2-metal doping.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    2
    Citations
    NaN
    KQI
    []