Species-Specific, pH-Independent, Standard Redox Potential of Selenocysteine and Selenocysteamine.

2020 
Microscopic redox equilibrium constants and standard redox potential values were determined to quantify selenolate-diselenide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of selenolates could so far be converted into pH-dependent, apparent parameters (equilibrium constants, redox potentials) only. In this work, the selenolate-diselenide redox equilibria of selenocysteamine and selenocysteine against dithiothreitol were analyzed by quantitative nuclear magnetic resonance (NMR) methods to characterize the interfering acid-base and redox equilibria. The directly obtained, pH-dependent, conditional redox equilibrium constants were then decomposed by our method into pH-independent, microscopic constants, which characterize the two-electron redox transitions of selenocysteamine and selenocysteine. The 12 different, species-specific parameter values show close correlation with the respective selenolate basicities, providing a tool to estimate otherwise inaccessible site-specific selenolate-diselenide redox potentials of related moieties in large peptides and proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    2
    Citations
    NaN
    KQI
    []