Fluorescence-based resource for semi-automated genomic analyses

1994 
To facilitate the practical application of highly efficient semi-automated methods for general application in genomic analyses, we have developed a fluorescence-based marker resource. Ninety highly polymorphic simple tandem repeat markers were combined to provide a rapid, accurate, and highly efficient initial genome-wide screening system. These markers are spaced on average every 33 recombination units, with a mean heterozygosity of 81% (range 65-94%), covering 22 autosomes and the X and Y chromosomes. Less than 3% of the genome lies beyond 30 cM of the nearest marker. Markers were placed in a vertical ladder that we have termed a SET according to the size of the PCR fragments they produce during electrophoresis. Each SET was designed to avoid overlap between loci during gel separations to assure accuracy when scoring genotypes. We have constructed 15 SETS of markers. Three SETS, each labelled with one of three fluors, were combined into what we have termed a GROUP, which is co-electrophoresed with internal size standards that are labelled with a fourth flour. Five GROUPS of markers were assembled that contain a total of 15 SETS of markers. Each GROUP cover 18 regions of the genome that can be detected simultaneously, since this genomic analysis systemmore » is fully compatible with automated fragment analyzers using simultaneous four-color fluorescence-based detection systems. This allows for multiplex detection and a throughput of 1,944 genotypes daily per instrument. This system will be highly beneficial in a number of clinical and research applications including: linkage, cancer genetics, forensics, and cytogenetics.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []