Investigations on the Response of Ceramic Ball Aggregated and Steel Fibre Reinforced Geopolymer-Based Ultra-High Performance Concrete (G-UHPC) to Projectile Penetration

2020 
Abstract This paper presents experimental and numerical studies on projectile impact resistance of ceramic ball aggregated and steel fibre reinforced geopolymer-based ultra-high performance concrete (G-UHPC) targets. Compared with plain G-UHPC, ceramic ball aggregated G-UHPC enhanced projectile impact resistance regarding crack propagation, crater damage and depth of penetration (DOP). A further improvement of projectile impact resistance was observed if a combined addition of steel fibres and ceramic balls was used. Numerical simulations were then performed to further comprehend the projectile impact on G-UHPC targets using the HJC constitutive model in the finite element software LS-DYNA. Numerically simulated DOP, projectile velocity and displacement histories were obtained and then validated through comparing with the existing models. The numerical perforation limits for 20 vol-% ceramic ball aggregated and 1.5 vol-% steel fibre reinforced G-UHPC were 240 mm at 568 m/s and 380 mm at 798m/s, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    12
    Citations
    NaN
    KQI
    []