Identification and analysis of non-specific lipid transfer protein family in tobacco

2021 
Plant non-specific lipid transfer proteins (nsLTPs) can transfer lipids in vitro , regulate plant growth and development, and respond to environmental abiotic and biotic stresses. In this study, 74 nsLTPs genes were identified from the genome of Nicotiana tabacum variety K326, and we analyzed multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, cis -elements in the promoter sequences, 3D structure, and the expression patterns under different hormones and abiotic stresses. The results revealed that nsLTPs in tobacco could be divided into eight types, including type I, II, III, IV, V, VII, VIII, and XIII, according to the interval and sequence similarity between the eight cysteines. The same types of NtLTPs had similar intron-exon patterns and conserved motifs, motif 2 and motif 3 were the characteristic motifs of NtLTPs family. In the process of evolution, fragment duplication dominated the expansion of the NtLTPs family. RNA-seq analysis after drought treatment revealed that the functional differentiation patterns of repeat gene pairs were diverse during evolution period. Promoter analysis showed that they contained a variety of cis-acting elements in response to light response, hormones, and abiotic stress. Furthermore, qRT-PCR demonstrated that NtLTPs family genes had different expression patterns in different tissues and organs of tobacco plants, which could respond to abiotic stresses such as drought, salt, and hormone treatments (IAA, GA, and SA etc.). These results provide a theoretical reference for the in-depth analysis of the functions of NtLTPs family genes and molecular breeding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []