Quasi-optical Gaussian beam tracing to evaluate Doppler backscattering conditions

2006 
Microwave beam backscattering near the cut-off layer appears to be the most interesting diagnostic to observe density fluctuation time evolution for a given localization in the plasma and at a defined wave vector. It also provides perpendicular plasma velocity. Scattering only occurs when the Bragg selection rule is fulfilled, i.e. when the scattering wave vector is almost perpendicular to the magnetic field. In order to evaluate these scattering conditions, ray tracing is required. 3D geometry is necessary to evaluate the angle between the magnetic field and the wave vector at the reflection. The ripple effect on the iso-index layer curve cannot be neglected. Scattering localization and wave vector resolution can be approached if single ray tracing is replaced with quasi-optical beam tracing. Optical propagation is still considered in the WKB approximation but the beam is described as multiple connected rays. The beam radial expansion due to diffraction is well described. This approach allows one to compute beam parameters for all data acquisitions (50 triggers per shot) and all shots (40 shots per day) during the following night on a recent personal computer with MatLab©.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    28
    Citations
    NaN
    KQI
    []