Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

2013 
Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000?2002 combined summer drought?dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000?2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000?2001, 2005 and 2009) were characterized by negative anomalies with peak values between ?1.5 and ?0.5 and were statistically different (P?biome, showing that they were less responsive to drought and more resilient than the desert biome. We found that the desert biome is more vulnerable to drought than the grassland biome. Spatially averaged EVI was strongly correlated with the proportion of land area affected by drought (PDSI?desert biome (R2?=?65 and 60, p?biome (R2?=?53, p?desert and grassland biomes on the Plateau.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    80
    Citations
    NaN
    KQI
    []