Chemoattractants driven and microglia based biomimetic nanoparticle treating TMZ-resistant glioblastoma multiforme.

2021 
Currently, clinical treatment for temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) is still a difficult problem. The aim of this paper is to set up a new GBM-targeted drug delivery system to treat TMZ-resistant GBM. Zoledronate (ZOL) not only induces apoptosis of TMZ-resistant GBM cells by down-regulation of farnesyl pyrophosphate synthetase (FPPS) but also increases the proportion of M1-type GBM associated macrophages (GAM). Based on chemoattractants secreted by GBM cells, a ZOL loaded nanoparticle coated with microglia cell membrane (ZOL@CNPs) was prepared to deliver ZOL to central nervous system to treat TMZ-resistant GBM. ZOL@CNPs was actively recruited to TMZ-resistant GBM region by CX3CL1/CX3CR1 and CSF-1/CSF-1R signal axis, and the release of ZOL from ZOL@CNPs was triggered by glutathione in GBM cells. ZOL@CNPs inhibited the growth of TMZ-resistant GBM through inducing apoptosis and inhibiting the migration and invasion of TMZ-resistant GBM cells. Besides, the immunosuppressive and hypoxic microenvironment, playing an important role in the growth of TMZ-resistant GBM, was significantly improved by ZOL@CNPs though increasing the proportion of M1-type GAM and blocking the expression of HIF-1α. ZOL@CNPs has a great potential application in the treatment for TMZ-resistant GBM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    2
    Citations
    NaN
    KQI
    []