Laser-induced fluorescence measurements of ion fluctuations in electron and ion presheaths

2020 
Electrostatic flow-driven instabilities have been predicted in the presheath region of low-temperature plasmas for both ion and electron rich sheaths. The ion-acoustic fluctuations that arise from these instabilities can influence transport through an enhanced collision rate. In this work, ion fluctuation spectra were measured using laser-induced fluorescence (LIF) in the presheath region for both sheath polarities. The non-invasive nature of LIF compared to that of probes is particularly valuable for these measurements because the sheath and presheath around a probe may generate their own flow-driven instabilities, which obscure the measurement. Measurements were made using a recently implemented field programmable gate array-based system able to measure ion fluctuation spectra up to 1 MHz using a two-point correlation function technique. Narrow bandwidth ion fluctuations were observed near 0.46 f pi (460 kHz) for both sheath polarities, where f pi is the ion plasma frequency. The observed fluctuations were significantly stronger in the electron sheath case and were observed over a larger volume of plasma. Fluctuations were measured in the ion sheath case at locations far enough from the sheath that linear theory predicts stability, suggesting that ion-acoustic instabilities generated in the relatively small unstable region near the boundary reflect from the sheath and perturb a much larger volume of the plasma. This is expected to affect probes with both ion and electron rich sheaths, meaning any dc biased probe may effectively act as an ion-acoustic wave antenna. These measurements are consistent with the recent theory and particle-in-cell results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []