Nonequilibrium steady states in the Floquet-Lindblad systems: van Vleck's high-frequency expansion approach

2021 
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering. Here, for high-frequency drives with Lindblad-type dissipation, we develop a general theory to characterize and analyze NESSs based on the high-frequency (HF) expansion without numerically solving the time evolution. This theory shows that NESSs can deviate from the Floquet-Gibbs state depending on the dissipation type. We show the validity and usefulness of the HF-expansion approach in concrete models for a diamond nitrogen-vacancy (NV) center, a kicked open XY spin chain with topological phase transition under boundary dissipation, and the Heisenberg spin chain in a circularly-polarized magnetic field under bulk dissipation. In particular, for the isotropic Heisenberg chain, we propose the dissipation-assisted terahertz (THz) inverse Faraday effect in quantum magnets. Our theoretical framework applies to various time-periodic Lindblad equations that are currently under active research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    106
    References
    3
    Citations
    NaN
    KQI
    []