Detection of non-linear effects in satellite UV/Vis reflectance spectra: Application to the Ozone Monitoring Instrument

2020 
Abstract. Non-linear effects, such as from saturation, stray light, or obstruction of light, negatively impact satellite measured ultraviolet and visible Earthshine radiance spectra and downstream retrievals of atmospheric and surface properties derived from these spectra. In addition, excessive noise such as from cosmic ray impacts, prevalent within the South Atlantic Anomaly, can also degrade satellite radiance measurements. Saturation specifically pertains to observations of very bright surfaces such as sun glint over water surfaces or thick clouds. Related residual electronic cross-talk or blooming effects may occur in spatial pixels adjacent to a saturated area. Obstruction of light can occur within the zones of solar eclipses as well as from material located outside of the satellite instrument. The latter may also produce unintended scattered light into a satellite instrument. When these effects cannot be corrected to an acceptable level for science quality retrievals, it is desirable to flag the affected pixels. Here, we introduce a new detection method that is based on the correlation, r, between the observed Earthshine radiance and solar irradiance spectra over a 10 nm-spectral range; our Decorrelation Index (DI for brevity) is simply defined as DI=1−r. DI increases with non-linear effects or excessive noise in either radiances (the most likely cause in OMI data) or irradiances. DI is relatively straight-forward to use and interpret and can be computed for different wavelength intervals. We developed a set of DIs for two spectral channels of the Ozone Monitoring Instrument (OMI), a hyperspectral pushbroom imaging spectrometer. For each OMI spatial measurement, we define 14 wavelength-dependent DIs within the OMI visible channel (350–498 nm) and 6 DIs in its ultraviolet 2 (UV2) channel (310–370 nm). As defined, DIs reflect a continuous range of deviations of observed spectra from the reference irradiance spectrum that are complementary to the binary Saturation Possibility Warning (SPW) flags currently provided for each individual spectral/spatial pixels in the OMI radiance data set. Smaller values of DI are also caused by a number of geophysical factors; this allows one to obtain interesting physical results on the global distribution of spectral variations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []