WREF 2012: MODELING GENERATION SYSTEMS FROM USING SOLAR STIRLING ENGINES PARABOLIC DISHES (SOLAR / DISH)

2012 
For the first time a model structured according (Duffie J. and Beckman W., 1980), (Gaven H. and Bannerot R. 1984), (Kongtragool, B. and Wongwises S., 2005), is presented, that describes the behavior of an electric power generation system, based on a solar energy technology using a Dish/Stirling system coupled to an electric generator. The first part of the model determines the characteristic of the earth movement related to the Sun, obtaining the follow-up angles to maximize the temperature in the receiver at any geographical location. The efficiencies for every stage of the system were also calculated, based on the reports of the Meteorological Station of the University Itajuba-Brazil. Also, using the model, the optical-geometric variables were calculated, which allows optimizing the behavior of the system for any geometric dimensions and types of materials of the collector/receiver. In addition, the model gives the heat balance calculation evaluating the efficiencies of the manifold, the receiver, the Stirling motor and the whole system. Using MATLAB a simulation was done and the results validated by specialized publications. For a collector of 7,5 m of diameter, having a constant radiation of 1000 W/m², the optimum temperature for the higher efficiency of the system (67%), was 1551 K. For the maximum power condition, the model shows that the temperature must be 1664 K, but with an overall efficiency of only 26
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    5
    Citations
    NaN
    KQI
    []