Hydrogeochemical Study on Closed-Basin Lakes in Cold and Semi-Arid Climates of the Valley of the Gobi Lakes, Mongolia: Implications for Hydrology and Water Chemistry of Paleolakes on Mars

2020 
Previous studies suggested that, generally, the climate of early Mars would have been semi-arid when the surface temperatures were above freezing. On early Mars, closed-basin lakes would have been created; however, the hydrogeochemical cycles of the lake systems are poorly constrained. Here we report results of our field surveys to terrestrial analogs of closed-basin lake systems that developed in cold and semi-arid climates: The Valley of the Gobi Lakes of Mongolia. Our results show that groundwater plays a central role not only in hydrology, but also in geochemical cycles in the lake systems. We find that groundwater predominantly flows into the lakes through local seepage and regional flows in semi-arid climates. Through the interactions with calcite-containing soils, local groundwater seepage provides Ca2+ and HCO3− to the lakes. In the wetland located in between the lakes, high-salinity shallow pools would provide Cl− and Na+ to the groundwater through infiltration. If similar processes occurred on early Mars, local seepage of groundwater would have provided magnesium and alkalinity to the early Jezero lakes, possibly leading to authigenic precipitation of lacustrine carbonates. On early Mars, infiltration of surface brine may have transported salts and oxidants on the surface to lakes via regional groundwater flows. We suggest that inflows of multiple types of groundwater in semi-arid climates could have caused redox disequilibria in closed-basin lakes on early Mars.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []