A liquid chromatography-mass spectrometry workflow for in-depth quantitation of fatty acid double bond location isomers.

2021 
Tracing compositional changes of fatty acids (FAs) is frequently used as a means of monitoring metabolic alterations in perturbed biological states. Given that more than half of FAs in the mammalian lipidome are unsaturated, quantitation of FAs at a carbon-carbon double bond (C=C) location level is necessary. In this work, we have developed a workflow for global quantitation of FAs, including C=C location isomers, via charge-tagging Paterno-Buchi (PB) derivatization and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The use of 2-acetylpiridine (2-acpy) as the charge-tagging PB reagent led to a limit of identification in the sub-nanomolar range for mono- and poly-unsaturated as well as conjugated FAs. Conjugated free FAs of low abundance such as FA 18:2 (n-7, n-9) and FA 18:2 (n-6, n-8) were quantified at concentrations of 0.61 ± 0.05 and 0.05 ± 0.01 mg per 100 g in yak milk powder, respectively. This workflow also enabled deep profiling of eight saturated and thirty-seven unsaturated total FAs across a span of four orders of magnitude in concentration, including ten groups of C=C location isomers in pooled human plasma. A pilot survey on total FAs in plasma from patients with type 2 diabetes revealed that the relative compositions of FA 16:1 (n-10) and FA 18:1 (n-10) were significantly elevated compared to that of normal controls. The developed FA analysis workflow may serve as a powerful tool for deep profiling of FAs in both fundamental and clinical studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []