Overexpression of microRNA-141 inhibits osteoporosis in the jawbones of ovariectomized rats by regulating the Wnt/β-catenin pathway

2020 
OBJECTIVE: This work was aimed to investigate the effect of microRNA-141 (miR-141) overexpression in the jawbones of ovariectomized-induced osteoporosis rats and investigate the role of miR-141 in the Wnt/beta-catenin pathway. METHODS: Twenty-four female rats were randomly divided into the sham group, ovariectomized osteoporosis group (OP), miR-141 agonist group (miR-141), and miR-141 scramble group (Scramble). Bone mineral density (BMD) and pathological changes of the jaw were detected. Serum receptor activator of nuclear factor-B ligand (RANKL), osteoprotegerin, tartrate-resistant acid phosphatase (TRAP), and bone gla protein (BGP) levels were tested by ELISA. The expression of Runt-related transcription factor 2 (Runx2), and Osterix measured by immunohistochemistry and the expression of Wnt, beta-catenin, and Dickkopf1 (DKK1) proteins was measured by Western blot. Furhter, the Wnt agonist DKK2-C2, Wnt inhibitor Endostar were used to verify the effect of miR-141 overexpression on the Wnt/beta-catenin pathway. RESULT: Compared with the OP group, the content of osteoprotegerin increased while the levels of RANKL, BGP, TRAP decreased in the miR-141 and DKK2-C2 groups (p < 0.05). The levels of Runx2 and Osterix increased significantly in the miR-141 and DKK2-C2 groups when compared to the OP group (p < 0.05). Interestingly, the protein expression of Wnt and beta-catenin increased while DKK1 was remarkably down-regulated in the miR-141 and DKK2-C2 groups when compared to the OP group (p < 0.05). In contrast to the miR-141 group, the above results were reversed after treatment with the Endostar (p < 0.05). CONCLUSION: Overexpression of miR-141 could inhibit the osteoporosis of jawbones in ovariectomized rats by activating the Wnt/beta-catenin pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    4
    Citations
    NaN
    KQI
    []