Combined Freeze-Thaw and Chloride Attack Resistance of Concrete Made with Recycled Brick-Concrete Aggregate

2021 
The objective of this study was to investigate the physico-chemical properties of concrete made with recycled brick-concrete aggregate, which was the mixture from waste concrete and waste clay brick in a 7:3 ratio. Specifically, this paper investigated the mechanical properties, freeze-thaw resistance, and distribution of water-soluble chloride ions of concrete containing RBCA and fly ash (FA) against combined freeze-thaw and sodium chloride attack. Concrete containing RBCA replacement of natural coarse aggregate and fly ash replacement of Portland cement was subjected to 45 freeze-thaw cycles containing sodium chloride solution. It was discovered that the mechanical properties and freeze-thaw resistance to sodium chloride attack gradually decreased with increasing RBCA content. At the same time, a replacement level of 15% FA by weight resulted in significant improvements in compressive strength and resistance to combined freeze-thaw and chloride attack. Furthermore, using a replacement of 30% FA by weight markedly improved the resistance to chloride ion penetration of concrete due to the lowest water-soluble chloride content.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []