Hybrid powertrain optimization with trajectory prediction based on inter-vehicle-communication and vehicle-infrastructure-integration

2014 
Recent advances in Inter-Vehicle Communications (IVC) and Vehicle-Infrastructure Integration (VII) paved ways to real-time information sharing among vehicles, which are beneficial for vehicle energy management strategies (EMS). This is especially valuable for power-split hybrid electrical vehicles (HEV) in order to determine the optimal power-split between two different power sources at any particular time. Certainly, researches in this area have been done, but tradeoffs between optimality, driving-cycle sensitivity, speed of calculation and charge-sustaining (CS) conditions have not been cohesively addressed before. In light of this, a combined approach of a time-efficient powertrain optimization strategy, utilizing trajectory prediction based on IVC and VII is proposed. First, Gipps’ car following model for traffic prediction is used to predict the interactions between vehicles, combined with the cell-transmission-model (CTM) for the leading vehicle trajectory prediction. Secondly, a computationally efficient charge-sustaining (CS) HEV powertrain optimization strategy is analytically derived and simulated, based on the Pontryagin’s Minimum Principle and a CS-condition constraint. A 3D lookup-map, generated offline to interpolate the optimizing parameters based on the predicted speed, is also utilized to speed up the calculations. Simulations are conducted for 6-mile and 15-mile cases with different prediction update timings to test the performance of the proposed strategy against a Rule-Based (RB) control strategy. Results for accurate-prediction cases show 9.6% average fuel economy improvements in miles-per-gallon (MPG) over RB for the 6-mile case and 7% improvements for the 15-mile case. Prediction-with-error cases show smaller average MPG’s improvements, with 1.6% to 4.3% improvements for the 6-mile case and 2.6% to 3.4% improvements for the 15-mile case.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    62
    Citations
    NaN
    KQI
    []