Pulse-Width Modulation-based TMS mimics effects of conventional TMS on human primary motor cortex

2021 
Objective: We developed a novel transcranial magnetic stimulation (TMS) device to generate flexible stimuli and patterns. The system synthesizes digital equivalents of analog waveforms, relying on the filtering properties of the nervous system. Here, we test the hypothesis that the novel pulses can mimic the effect of conventional pulses on the cortex. Approach: A second-generation programmable TMS (pTMS2) stimulator with magnetic pulse shaping capabilities using pulse-width modulation (PWM) was tested. A computational and an in-human study on twelve healthy participants compared the neuronal effects of conventional and modulation-based stimuli. Main results: Both the computational modeling and the in-human stimulation showed that the PWM-based system can synthesize pulses to effectively stimulate the human brain, equivalent to conventional stimulators. The comparison includes motor threshold, MEP latency and input-output curve measurements. Significance: PWM stimuli can fundamentally imitate the effect of conventional magnetic stimuli while adding considerable flexibility to TMS systems, enabling the generation of highly configurable TMS protocols.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []