Analysis of thermal shock strength and quality factor with infrared optical domes

2012 
The development of infrared optical materials is always closely related to the research and exploration of material science. The infrared optical domes bears shock and produces stress when the infrared optical domes mounted on the missile moving at a high speed is shocked by high temperature. According to principle of energy balance in fracture mechanics proposed by D.P.H. Hasselman, the author analyzed the crack extension and derived the relationship between Infrared optical materials window model and thermal shock quality factor. Meanwhile, strong or weak of thermal shock for different samples whether they are thin or thick are compared through the operation of queuing algorithm. The conclusion is the internal surface of the domes isn’t heated when the window model is the thermal shock quality factor of thick sample and the heating time is between heating time constant and diffusion time constant. On the other hand, the internal surface of the domes is being heated when the window model is the thermal shock quality factor of thin sample and the heating time is between the two time constants. The most optical domes parts in practice is belong the thin model. For the thin model, reducing the thickness of optical parts can improve their thermal shock ability but mechanical impact stress factor should be considered comprehensively to design optical parts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []