High-frequency, low-magnitude vibrations suppress the number of blood vessels per muscle fiber in mouse soleus muscle

2005 
Extremely low-magnitude (0.3 g), high-frequency (30–90 Hz), whole body vibrations can stimulate bone formation and are hypothesized to provide a surrogate for the oscillations of muscle during contraction. Little is known, however, about the potential of these mechanical signals to stimulate adaptive responses in other tissues. The objective of this study was to determine whether low-level mechanical signals produce structural adaptations in the vasculature of skeletal muscle. Eight-week-old male BALB/cByJ (BALB) mice were divided into two experimental groups: mice subjected to low-level, whole body vibrations (45 Hz, 0.3 g) superimposed on normal cage activities for 15 min/day (n = 6), and age-matched controls (n = 7). After the 6-wk experimental protocol, sections from end and mid regions of the soleus muscles were stained with lectin from Bandeiraea Simplicifolia, an endothelial cell marker, and smooth muscle (SM) α-actin, a perivascular cell marker. Six weeks of this low-level vibration caused a 29% d...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    45
    Citations
    NaN
    KQI
    []