Matrix Metalloprotease 3 Activity Supports Hippocampal EPSP-to-Spike Plasticity Following Patterned Neuronal Activity via the Regulation of NMDAR Function and Calcium Flux

2017 
Matrix metalloproteases (MMPs) comprise a family of endopeptidases that are involved in remodeling the extracellular matrix and play a critical role in learning and memory. At least 24 different MMP subtypes have been identified in the human brain, but less is known about the subtype-specific actions of MMP on neuronal plasticity. The long-term potentiation (LTP) of excitatory synaptic transmission and scaling of dendritic and somatic neuronal excitability are considered substrates of memory storage. We previously found that MMP-3 and MMP-2/9 may be differentially involved in shaping the induction and expression of excitatory postsynaptic potential (EPSP)-to-spike (E-S) potentiation in hippocampal brain slices. MMP-3 and MMP-2/9 proteolysis was previously shown to affect the integrity or mobility of synaptic N-methyl-d-aspartate receptors (NMDARs) in vitro. However, the functional outcome of such MMP-NMDAR interactions remains largely unknown. The present study investigated the role of these MMP subtypes in E-S plasticity and NMDAR function in mouse hippocampal acute brain slices. The temporal requirement for MMP-3/NMDAR activity in E-S potentiation within the CA1 field largely overlapped, and MMP-3 but not MMP-2/9 activity was crucial for the gain-of-function of NMDARs following LTP induction. Functional changes in E-S plasticity following MMP-3 inhibition largely correlated with the expression of cFos protein, a marker of activity-related gene transcription. Recombinant MMP-3 promoted a gain in NMDAR-mediated field potentials and somatodendritic Ca2+ waves. These results suggest that long-term hippocampal E-S potentiation requires transient MMP-3 activity that promotes NMDAR-mediated postsynaptic Ca2+ entry that is vital for the activation of downstream signaling cascades and gene transcription.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    12
    Citations
    NaN
    KQI
    []