Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies

2020 
Whether renewable energy sources (RES) will provide sufficient energy surplus to entirely power complex modern societies is under discussion. We contribute to this debate by estimating the current global average energy return on energy invested (EROI) for the five RES technologies with the highest potential of electricity generation from the comprehensive and internally consistent estimations of their material requirements at three distinct energy system boundaries: standard farm-gate (EROI st ), final at consumer point-of-use (EROI final ), and extended (including indirect investments, EROI ext ). EROI st levels found fall within the respective literature ranges. Expanding the boundaries closer to the system level, we find that only large hydroelectricity would currently have a high EROI ext ~ 6.5:1, while the rest of variable RES would be below 3:1: onshore wind (2.9:1), offshore wind (2.3:1), solar Photovoltaic (PV) (1.8:1), and solar Concentrated Solar Power (CSP) (<1:1). These results indicate that, very likely, the global average EROI ext levels of variable RES are currently below those of fossil fuel-fired electricity. It remains unknown if technological improvements will be able to compensate for factors, which will become increasingly important as the variable RES scale-up. Hence, without dynamically accounting for the evolution of the EROI of the system, the viability of sustainable energy systems cannot be ensured, especially for modern societies pursuing continuous economic growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    107
    References
    15
    Citations
    NaN
    KQI
    []