Reinforcement of cellulose nanofibers in polyacrylamide gels

2017 
Cellulose nanofibers (CNFs) have emerged as a promising nanofiller for effective reinforcement of nanocomposites due to their excellent mechanical properties. In this study, CNFs were fabricated by a simple grinding method and used to strengthen polyacrylamide (PAM) gels through in situ free radical polymerization. The morphology, compression properties, and chemical structure of the prepared gels were investigated. The results showed that large amounts of nanofibers embedded inside the PAM matrix and formed network structure by increasing the CNF content. Significantly, PAM/CNF gel with 5 wt% CNF exhibited highly improved compression strength by 6.8-fold as compared to that of pure PAM gel. The FTIR analysis indicated that hydrogen bondings between CNF and PAM chains mainly contributed to the superior mechanical properties of the hybrid gels. In summary, this study provides a novel alternative approach for preparing tough composite gels by combing rigid CNF and soft polymer and extending the application of biomedical load-bearing gel materials such as artificial cartilage and other soft tissues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    24
    Citations
    NaN
    KQI
    []