Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV elec-trons and gamma-rays

2018 
Experiments were performed to study electron acceleration by intense sub-picosecond laser pulses propagating in sub-mm long plasmas of near critical electron density (NCD). Low density foam layers of 300-500 um thickness were used as targets. The NCD-plasma was produced by a mechanism of a super-sonic ionization when a well-defined separate ns-pulse was sent onto the foam-target forerunning the relativistic main pulse. The effect of the relativistic laser pulse channeling and creation of quasi-static azimuthal magnetic and radial electric fields that keeps electrons in the channel ensured effective coupling of the laser energy into energetic electrons. Application of sub-mm thick low density foam layers provided substantial increase of the electron acceleration path in a NCD-plasma compared to the case of freely expanding plasmas created in the interaction of the ns-laser pulse with solid foils. Performed experiments on the electron heating by a 100J, 750 fs short laser pulse of (2-5)x1019 W/cm2 intensity demonstrated that the effective temperature of supra-thermal electrons increased from 1.5-2 MeV, in the case of the relativistic laser interaction with a metallic foil at high laser contrast, up to 13 MeV for the laser shots onto the pre-ionized foam. The observed tendency towards the strong increase of the mean electron energy and the number of ultra-relativistic laser-accelerated electrons is reinforced by the results of gamma-yield measurements that showed a 1000-fold increase of the measured doses. The experiment was supported by the 3D-PIC and FLUKA simulations made for used laser parameters and geometry of the experimental set-up. Both measurements and simulations show high directionality of the acceleration process close to the direction of the laser pulse propagation. The charge of super-ponderomotive electrons with E > 30 MeV reaches a high value of 78nC.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []