Emerging roles of melanocortin receptor accessory proteins (MRAP and MRAP2) in physiology and pathophysiology.

2020 
Abstract Melanocortin-2 receptor accessory protein (MRAP) has an unusual dual topology and influences the expression, localisation, signalling and internalisation of the melanocortin receptor 2 (MC2); the adrenocorticotropic hormone (ACTH) receptor. Mutations in MRAP are associated with familial glucocorticoid deficiency type-2 and evidence is emerging of the importance of MRAP in adrenal development and ACTH signalling. Human MRAP has two functional splice variants: MRAP-α and MRAP-β, unlike MRAP-β, MRAP-α has little expression in brain but is highly expressed in ovary. MRAP2, identified through whole human genome sequence analysis, has approximately 40% sequence homology to MRAP. MRAP2 facilitates MC2 localisation to the cell surface but not ACTH signalling. MRAP and MRAP2 have been found to regulate the surface expression and signalling of all melanocortin receptors (MC1-5). Additionally, MRAP2 moderates the signalling of the G-protein coupled receptors (GCPRs): orexin, prokineticin and GHSR1a; the ghrelin receptor. Whilst MRAP appears to be mainly involved in glucocorticoid synthesis, an important role is emerging for MRAP2 in regulating appetite and energy homeostasis. Transgenic models indicate the importance of MRAP in adrenal gland formation. Like MC3R and MC4R knockout mice, MRAP2 knockout mice have an obese phenotype. In vitro studies indicate that MRAP2 enhances the MC3 and MC4 response to the agonist αMSH, which, like ACTH, is produced through precursor polypeptide proopiomelanocortin (POMC) cleavage. Analysis of cohorts of individuals with obesity have revealed several MRAP2 genetic variants with loss of function mutations which are causative of monogenic hyperphagic obesity with hyperglycaemia and hypertension. MRAP2 may also be associated with female infertility. This review summarises current knowledge of MRAP and MRAP2, their influence on GPCR signalling, and focusses on pathophysiology, particularly familial glucocorticoid deficiency type-2 and obesity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []