Histone deacetylase inhibitors block nuclear factor-κB-dependent transcription by interfering with RNA polymerase II recruitment.

2011 
Histone deacetylase inhibitors (HDACi) have been shown to exhibit anti-inflammatory activity, but their mechanism of action is poorly understood. Trichostatin A (TSA) and the cyclic tetrapeptide class inhibitor Ky-2 inhibit both lipopolysaccharide-induced tumor necrosis factor-α (TNF-α) production in rats and TNF-α-induced expression of inflammatory genes in HeLa cells. We assessed the molecular mechanism underlying TSA-induced anti-inflammatory activity by genetically dissecting activation of the nuclear factor-κB (NF-κB) pathway following stimulation with TNF-α. Trichostatin A did not inhibit degradation of IκBα, nuclear translocation and DNA binding of NF-κB; also, the drug did not affect transient expression from exogenous κB-reporter plasmids. However, endogenous expression of inflammatory cytokines such as interleukin-8 (IL-8) was greatly reduced, even in the absence of de novo protein synthesis, suggesting that HDACi directly inhibits NF-κB-induced transcription. Indeed, chromatin immunoprecipitation (ChIP) analysis showed that events related to transcriptional activation of the IL-8 gene region in response to TNF-α, including recruitment of RNA polymerase II (Pol II), were compromised in the presence of TSA. These data indicate that HDAC activity is required for the efficient initiation and/or elongation of inflammatory gene transcription mediated by NF-κB. (Cancer Sci 2011; 102: 1081–1087)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    27
    Citations
    NaN
    KQI
    []