On-Site Traversal Fractional Open Circuit Voltage with Uninterrupted Output Power for Maximal Power Point Tracking of Photovoltaic Systems

2020 
The fractional open-circuit voltage (FOCV) method is commonly adopted to track maximal power point of photovoltaic systems due to easy implementation and cost-effectiveness. However, the FOCV method is confronted with unstable output power and limited tracking accuracy. This paper proposes a novel on-site traversal FOCV method with uninterrupted output power and increased tracking accuracy through simulation and experimental verifications. Each solar cell is connected with a bypass diode and switching circuitry, so that specific solar cell can be traced and measured consecutively for determining its maximal power point (MPP). MATLAB/Simulink simulation results show that, in the time-varying irradiance case, the proposed method achieves a low ripple factor of 0.13% in 11–13 h and 0.88% in 9–15 h, under the typical 24 h irradiance curve. In the spatial-varying irradiance case, the accuracy of the proposed method reaches 99.85%. Compared with other FOCV methods, like pilot cell and semi pilot cell methods, the proposed method is of higher accuracy with a limited ripple effect. Experimental results show that this method can effectively trace different output performance of specific solar cell while generating stable output voltage with a low ripple factor of 1.55%, proving its compatibility with distributed sensing and applicability in smart photovoltaic systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []