pH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy.

2021 
Abstract Black phosphorus quantum dots(BPQDs) have shown a good application prospect in the field of tumor therapy due to their photoelectric effect and good biodegradability. Due to the active endocytosis and fast metabolic efficiency of tumor cells, BPQDs are easy to be absorbed by tumor cells. However, this does not guarantee that BPQDs will be completely targeted to tumor cells, and normal cells will also absorb BPQDs. Because the cell membrane is negatively charged, BPQDs are also negatively charged and are not easily absorbed by cells under the action of electrostatic repulsion. Surface pegylation is the most common modification method of black phosphorus at present. However, surface pegylation can reduce the uptake of BPQDs by tumor cells. Positive PEG is also easy to be recognized and swallowed by the reticuloendothelial system. The inherent instability and poor tumor targeting of BPQDs under physiological conditions limit further research and clinical application. For this purpose, we selected cationic polymer polyethylenimine (PEI) to modify BPQDs and then added RGD peptides targeting tumor cells. An outer layer of negatively charged PEG+DMMA makes the nanosystem more stable in vivo. In the acidic environment of the tumor, the PEG layer has a charge reversal, and the positively charged PEI and the RGD polypeptide BPQDs targeted by the tumor cells are released into the tumor cells. It provides a new method for efficiently and accurately transporting BPQDs, a novel photosensitive nanomaterial, into tumor cells for photodynamic therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []