Oscillatory self-organization dynamics between soliton molecules induced by gain fluctuation

2021 
In passively mode-locked fiber lasers (PMLFLs), the dissipative solitons (DSs) can self-organize to form complex structures through delicate interactions. However, it is still elusive to control these soliton structures by external influences. We here find that at a certain critical power, the location between two soliton molecules can be controlled by a slow modulated pump power. After applying the pump power with periodic fluctuation, two soliton molecules oscillate from the state of soliton molecular complex to stable distribution with maximum inter-molecular separation. During this process, the internal structure of each soliton molecule keeps steady. The slow gain depletion and recovery mechanism which plays a dominant role affects the motion of soliton molecules. These results could further expand the molecular analogy of spectroscopy and stimulate the development of optical information storage and processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []