Robust Object-based SLAM for High-speed Autonomous Navigation

2019 
We present Robust Object-based SLAM for High-speed Autonomous Navigation (ROSHAN), a novel approach to object-level mapping suitable for autonomous navigation. In ROSHAN, we represent objects as ellipsoids and infer their parameters using three sources of information – bounding box detections, image texture, and semantic knowledge – to overcome the observability problem in ellipsoid-based SLAM under common forward-translating vehicle motions. Each bounding box provides four planar constraints on an object surface and we add a fifth planar constraint using the texture on the objects along with a semantic prior on the shape of ellipsoids. We demonstrate ROSHAN in simulation where we outperform the baseline, reducing the median shape error by 83% and the median position error by 72% in a forward-moving camera sequence. We demonstrate similar qualitative result on data collected on a fast-moving autonomous quadrotor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    22
    Citations
    NaN
    KQI
    []