An Accurate Doppler Parameters Calculation Method of Geosynchronous SAR Considering Real-Time Zero-Doppler Centroid Control

2021 
The zero-Doppler centroid control in geosynchronous synthetic aperture radar (GEO SAR) is beneficial to reduce the imaging complexity (reduces range-azimuth coupling in received data), which can be realized by adjusting the radar line of sight (RLS). In order to maintain the zero-Doppler centroid throughout the whole orbit of the GEO SAR satellite, the RLS needs to be adjusted in real-time. Due to the ultra-long synthetic aperture time of GEO SAR, the RLS variation during the synthetic aperture time cannot be neglected. However, in the previous related papers, the real-time variation of RLS during the synthetic aperture time was not taken into account in the calculation of Doppler parameters, which are closely related to the RLS, resulting in inaccurate calculation of Doppler parameters. Considering this issue, an accurate Doppler model (the model of relative motion between satellite and ground target) of GEO SAR is proposed in this paper for the accurate calculation of Doppler parameters (Doppler centroid and Doppler bandwidth and other parameters). Finally, simulation experiments are designed to confirm the effectiveness and necessity of the proposed model. The results indicate that the RLS variation during the synthetic aperture time has a considerable effect on Doppler parameters performance of the GEO SAR, and refers to a more stable azimuth resolution performance (the resolution is kept near a relatively stable value at most positions of the elliptical orbit) compared with the case that does not consider the real-time zero-Doppler centroid control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []