Secretory apical Cl– channels in A6 cells: possible control by cell Ca2+ and cAMP

1999 
Distal kidney cells (A6) from Xenopus laevis were cultured to confluency on porous supports. Tissues were mounted in Ussing-type chambers to measure short-circuit current (Isc), transepithelial conductance and capacitance, and to analyse the fluctuation in Isc. In the absence of apical NaCl, but with normal basolateral NaCl Ringer’s solution, extracellular addition of ATP, oxytocin, a membrane-permeant cAMP derivative, and forskolin produced a transient increase of the electrical parameters. Noise analysis revealed a spontaneous Lorentzian component. All responses depend strictly on the presence of basolateral Cl– and are caused by the activation of an apical (CFTR type) Cl– permeability. Repetitive treatment with ATP (or oxytocin) resulted in refractoriness. ATP and oxytocin acted antagonistically, whereas cAMP and ATP had additive effects. Incubation with the vesicular Ca2+ pump inhibitor thapsigargin or application of the Ca2+ channel blocker nifedipine elicited finite but variable Cl– channel activity. After treatment with nifedipine or thapsigargin, the response to oxytocin was severely impaired. We speculate that not only cAMP but also cell Ca2+ plays a crucial role in the activation of CFTR in A6. Ca2+ may be multifunctional but the rise in capacitance (apical area) observed with all stimulants strongly suggests its involvement in, and contribution to, exocytosis in the process of the CFTR-mediated transcellular Cl– movements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    18
    Citations
    NaN
    KQI
    []