RhoGTPase stimulation is associated with strontium chloride treatment to counter simulated microgravity-induced changes in multipotent cell commitment

2017 
Microgravity-related cytoskeletal disorganization is associated with an altered balance between osteoblastogenesis and adipogenesis of multipotent cells. Strontium chloride is known to increase osteoblastogenesis and repress adipogenesis, but its effects in microgravity-related conditions have not been established. Our goal was to investigate early events in this process, focusing on RhoGTPases as controllers of cytoskeletal organization leading to stem cell commitment. We cultivated C3H10T1/2 on microspheres using a rotating wall vessel bioreactor (NASA) in order to simulate microgravity-related conditions in adipogenesis and osteoblastogenesis conditions independently. We observed that rotating wall vessel cultures presented increased adipogenesis, while osteoblastogenesis was reduced. Strontium-treated multipotent cells presented a significant repression in adipogenesis (−90 %, p < 0.001 PPARyD8) and an activation of osteoblastogenesis (+95 %, p < 0.001 bone sialoprotein and osteopontin D8), even in gravity altered conditions. We established that concomitant RhoA/Rac1 activations were associated with osteoblastogenesis enhancement and adipogenesis limitation in uncommitted cells. As vascular endothelial growth factor splicing is mechanosensitive and its signaling is central to stem cell commitment, we investigated vascular endothelial growth factor production, isoforms and receptors expressions in our conditions. We observed that vascular endothelial growth factor and receptors expressions were not significantly affected, but we found that presence of soluble vascular endothelial growth factor was associated with RhoA/Rac1 activations, whereas sequestration of vascular endothelial growth factor by cells was associated with RhoA/Rac1 inhibitions. We propose that strontium triggers secretion of vascular endothelial growth factor and the subsequent Rac1 and RhoA activations leading to repression of adipogenesis and osteogenesis stimulation validating strontium as a counter measure for microgravity-induced alteration of cell commitment. A chemical element naturally found for instance in seafood or grains, could counter bone loss from long-term spaceflight. Alain Guignandon and colleagues from the Universite de Lyon a St-Etienne in France exposed multipotent embryonic fibroblasts to microgravity conditions similar to those found in space. They found the balance shifted in these stem cells from differentiating to bone-forming cells (osteoblasts) to differentiating to fatty-tissue forming cells (adipocytes). When the cells were treated with strontium, the shift toward osteoblastogenesis was regained. Strontium achieves this by sustaining the activity of two proteins that play a role in bone development but are suppressed in space. Strontium’s effect on the proteins could happen via release of vascular endothelial growth factor, which, under normal gravity conditions, plays a role in committing the cell to differentiation into osteoblasts rather than adipoyctes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    6
    Citations
    NaN
    KQI
    []