Functional organization of brain network in peripheral neural anastomosis rats after electroacupuncture:an ICA and connectome analysis.

2020 
Abstract Acupuncture is a mild therapy in rehabilitation practice of peripheral nerve injury. Previous studies confirmed the deep participation of brain plasticity in the process of functional restoration. The therapeutic effect of acupuncture is also believed to be closely associated with brain plasticity, especially in the hypothalamus and limbic system. But the fuzzy neural mechanism somehow limits the application or improvement of this therapy. There is little information about the effect of acupuncture on topological properties of brain networks. Instead of functional segregation approach, we utilized graph theory method to analyze the large-scale and distributed properties of information processing. We first established rat model of sciatic nerve injury and performed rehabilitation therapy of electroacupuncture for 120 days. Meanwhile, we used independent component analysis to extract seven sub-networks from the whole brain. Then measurements of graph theory were calculated in each sub-network as well as the whole brain network. We found no significant difference of any measurement in whole brain network among intervention group, model group and normal group. But the assortativity, hierarchy, small-world properties of sub-network displayed significant differences among three groups. It induces changes of neural plasticity in several sub-networks instead of whole brain network. We attributed the changes to the enhancement of the short-term compensatory adaptation and the reduction of the long-term overacting regional information transmission. The present study may shed light on the vague distinction of large-scale property of brain networks after electroacupuncture, which leads to a better understanding of this ancient traditional Chinese therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []