The activities of LRRK2 and GCase are positively correlated in clinical biospecimens and experimental models of Parkinson's disease

2021 
LRRK2 is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways and vesicle trafficking. Mutations in LRRK2 cause autosomal dominant forms of Parkinson9s disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we investigated GCase levels and activity in LRRK2 G2019S knockin mice, in clinical biospecimens from PD patients carrying this mutation and in patient-derived cellular models. In these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []