Intra-operative radiation therapy with laser-accelerated carbon ions

2017 
Laser accelerators have long been proposed as beam source for hadron therapy. However, the high energies necessary for the treatment of deep-lying tumours, combined with stringent requirements on the beam quality, are still a severe challenge. In the present work, we discuss the applicability of laser-accelerated carbon ions at moderate energies (100–480 MeV) to the irradiation of superficial lesions. We propose a new therapeutic modality which combines the versatility of Intra-Operative Radiation Therapy with the advantages of carbon ions as compared to photon and electron radiation. To justify this idea a feasibility study has been carried out, focused on the uniformity of dose deposition inside the treatment volume. Physical and biological aspects characteristic to laser-accelerated carbon ion beams are considered. A GATE simulation has been performed, showing an approximately uniform depth-dose profile up to a maximum penetration depth of 5 mm for a single radiation boost of 10 GyE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []