A hybrid first-order and WENO scheme for the high-resolution and computationally efficient modeling of pollutant transport

2021 
Abstract To improve the modeling quality of pollutant transport in shallow waters, different reconstruction schemes have been proposed to better link the edge values to the centroid values of a pollutant concentration in finite-volume shallow water models: a scheme of higher (lower) order generally has a better (poorer) quantitative accuracy but lower (higher) computational efficiency. Here, a numerical comparative study of several classical schemes is first conducted under a variety of pollutant distribution conditions. The results reveal that, for the condition of relatively uniform pollutant distribution, the numerical accuracy of a lower-order scheme (such as the first-order scheme or the MUSCL scheme) may be similar to that of a higher-order scheme (such as the WENO scheme). The second-order derivative of the concentration, here termed the nonlinear indicator (NI), correlates well with the discrepancies between the numerical solutions and analytical solutions. A threshold value of approximately 10 − 7 ∼ 10 − 6 m − 2 for the NI is identified, above which a higher-order scheme may be required. Based on this understanding, a hybrid first-order and WENO scheme is proposed. Numerical case studies show that the hybrid scheme can successfully combine the efficiency of the first-order scheme with the high accuracy of the WENO scheme for pollutant modeling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []